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VI. Conclusions

A configuration DSA for dynamic systems with a plate is devel-
oped by using CAD parameters selected from CAD geometry in
a commercial CAD tool. With this system, the designer can easily
obtain configuration design velocity fields using Pro/ENGINEER
and Pro/TOOLKIT. The numerical example of a reinforcement
model shows that the proposed configuration DSA of eigenvalue
and frequency-responseresults of plate are accurate.
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Introduction

TRUCTURAL optimization has been the subject of numerous

studiesinrecentyears.!' ~® Topologicalmodificationscan greatly
improve a typical design; however, the solutions of topological opti-
mization problems are difficult because of changes in the structural
model. In particular, changes in the number of variables and de-
grees of freedom result in correspondingchanges in the form of the
analysis equation.

One of the main obstacles in topological modification analy-
sis is the high computational effort involved in repeated analysis.
As structural systems to be solved for static and dynamic charac-
teristics become larger, the computing time and the correspond-
ing cost increase drastically. Hence, various techniques have been
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used to reduce the size of the system or the dimensions of the
structural matrices involved in the formulation’~!? The reduction
schemesincreasethe calculationefficiency attheexpenseof solution
accuracy.

In previous studies, two sets of degrees of freedom (DOF), called
secondary and primary, are introduced in repeated analysis. Dur-
ing the solution, the secondary set is condensed out, whereas the
primary one is retained. When the transformation matrix derived
from the stiffness and mass matrix is used, the system to be solved
is transformed into a reduced subspace represented by the primary
degrees of freedom. An important problem concerns which DOF
should go into the primary set. Improper selection may not only re-
sult in missing some of the lowest modes but also cause difficulties
in programming because one must redecompose stiffness and mass
matrices according to the selected primary and secondary sets.

Considering that the secondary and primary DOF method is used
commonly in substructures, we intend to introduce this method
into dynamic reanalysis of topological modification. In the present
study, the DOF in the initial system are selected as the primary
set whereas the ones added in the modified system are selected
as the secondary set. When static condensation and Rayleigh quo-
tient are used and the effects of the mass added in the modified
system are considered, several eigenpairs are obtained simultane-
ously. The results show that the proposed method can give high
accuracy.

Problem Formulation
We consider only the case where both the design variables and
the number of DOF are added in the modified system. In this case,
the generalized eigenproblemis as follows:

KV = MV 1)
where
K =K, + AK' )
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K, and M, are the stiffness and mass matrices of the initial structure,
respectively. Subscript n denotes the number of DOF of the initial
structure and m the augmentation of the DOF of the modified struc-
ture. If the DOF in the initial structure are selected as the primary
set and the ones added in the modified structure are selected as the
secondary one, having assembled the change of stiffness and mass
matrices for the added new nodes and members, from Egs. (1-7), it
can be seen that the stiffness and mass matrices do not have to be
redecomposed.

Proposed Method
Substituting Egs. (2-7) into Eq. (1) yields

K(J + AKnn AKnm Vn
AKm n AKm m Vm

- M(J + AMnn AMnm Vn (8)
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Table1 Comparison of eigenvalues from Fig. 2
Initial exact Modified exact ~ Guyan’s static Relative Proposed Relative

k value value condensation’ error method error

1 0.513067E+02 0.909199E+02 0.913709E+02 0.496047E—02 0.909238E+02  0.430464E—04
2 0.287862E+03 0.330971E+403 0.346713E+03 0.475620E—01 0.331366E+03  0.119121E—-02
3 0.521675E+03 0.573782E+03 0.588422E+03 0.255145E—-01 0.573173E+03 —0.106139E—-02
4 0.707402E+403 0.792877E+03 0.840972E+03 0.606591E—01 0.790245E+03 —0.331879E—-02
5 0.119840E+04 0.124285E+04 0.135651E+04 0.914516E—01 0.124600E+04  0.253304E—-02
6 0.154818E+04 0.143572E+404 0.153446E+04 0.687746E—01 0.142804E+04 —0.535078E—02
7 0.171176E+04 0.180133E+04 0.189540E+04 0.522223E—01 0.177888E+04 —0.124631E—01
8 0.220927E+04 0.225430E+04 0.238183E+04 0.565731E—01 0.225412E+04 —0.761556E—04

Table2 Comparison of eigenvalues from Fig. 3
Initial exact Modified exact ~ Guyan’s static Relative Proposed Relative

k value value condensation’ error method error

1 0.513067E+02 0.780375E+02 0.918222E+02 0.176642E+00 0.780464E+02  0.114020E—-03
2 0.287862E+03 0.396425E+03 0.464513E+03 0.171754E+00 0.400915E+03  0.113252E—-01
3 0.521675E+03 0.486007E+03 0.577423E+03 0.188096E+00 0.478219E+03 —0.160234E—01
4 0.707402E+403 0.906374E+03 0.106865E+04 0.179038E+00 0.907725E+03  0.149007E—-02
5 0.119840E+04 0.142686E+04 0.159951E+04 0.121000E+00 0.142708E+04  0.155932E—-03
6 0.154818E+04 0.144752E+04 0.169589E+04 0.171586E+00 0.144976E+04  0.154909E—02
7 0.171176E+04 0.198273E+04 0.225035E+04 0.134975E+400 0.203345E+04  0.255821E—01
8 0.220927E+04 0.224724E+404 0.242616E+04 0.796208E—01 0.229490E+04  0.212111E—-01

1245

Let the mass associated with the vector V,, be zero; then Eq. (8)
becomes
AKMIIZ Vll )\' MU + AMIH! 0 Vll
AKy [\Vn ) 0 0]\ V.,

9
From the second equation of Eq. (9), one can obtain the transfor-
mation matrix relating the vectors V,, and V,,:

K(J + AKnn
AKm n

Vm = _AK,;,I,I AI{mn Vn = TVn (10)
and the eigenmode is written as
v= (" )= (" v, =sv (11
- V’” - T n — n

The preceding transformationis exact in a static sense because only
the stiffness matrix is used in Eq. (10).

Substituting Eq. (11) into Eq. (1) and premultiplying Eq. (1) by
ST yields

STKSV, = 1.S"MSV, (12)
Let
K, =S"KS (13)
M, =S"MS (14)
we have
K.V, =M.V, (15)

Solving the condensed eigenproblem, one can obtain approximate
eigenpairs of the modified structure. To improve the accuracy of the
eigenpairs, when the effects of mass added in the modified structure
are considered a more accurate transformationcan be obtained from
Eq. (8):
Vm = _(AKmm - )‘-AMmm)_l (AKmn - )‘-Aan)Vn (16)
When A and V,, derived from Eq. (15) are used, an improved V,, can
be obtained from Eq. (16). With the condition of orthogonality and
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Fig.2 Modified structure with 27 nodes and 67 members.

Rayleigh quotient, the eigenpairs obtained by the proposed method
are as follows:

hoew = VIKV VI MV (17
View = V /N VIMV (18)

Numerical Examples

Consider an initial truss structure (Fig. 1) with its parameters
Young’s modulus E =2.1 x 10'! Pa, cross-sectional area of each
bar A =1.2 x 107* m?, and mass density p =7.8 x 10° kg/m®.

Example 1

The topological modification with the new added 5 nodes and 17
members is shownin Fig. 2. Its parameters are the same as the initial
structure. The results obtained by Guyan’s static condensation’ are
compared with those obtained by the proposed method. The results
are listed in Table 1.

Example 2

The topological modification with the new added 11 nodes and
40 members is shown in Fig. 3. Its parameters are also the same as
the initial structure. Comparison of eigenvalues from Guyan’s static
condensation’ and the proposed method is shown in Table 2.

The results show that the present method can give better ap-
proximate eigenvaluesof the modified structure than Guyan’s static
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Fig.3 Modified structure with 33 nodes and 90 members.

condensation” That is because Guyan’s static condensation does
not contain the effects of mass from added members in the modi-
fied structure, whereas these effects are considered in the proposed
method. From Egs. (10) and (16~ 18), it can be seen thatlittle compu-
tational effort is added in the proposed method. From the results, it
can be also seen that the proposed method can also give high-quality
accuracy for the large topological modifications.

Conclusions

Ahybridmethod s presentedfor the efficientcalculationof eigen-
pairs of topological modifications in dynamic problems. The effects
of mass from the added member are consideredin this method. From
Eqgs. (10) and (16-18), it can be seen that the little computational
effort is added in the proposed method. The results show that the
proposed method is efficient for eigenproblemsof topological mod-
ifications. For large topologicalmodifications, the presentedmethod
can also give high accuracy.
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Introduction

ECAUSE of the well-known advantages of adaptive structures
over traditional structures, significant research is being con-
ducted on these structures at present (for example, Ref. 1). One
key requirement toward the success of adaptive structures would
be in choosing the optimal location of actuators. A large num-
ber of publications’=> have addressed this problem. In our previ-
ous paper’ various methods addressing this issue were mentioned.
Among various approaches being used, genetic algorithms (GA)
were found to be popular. Some advantages and disadvantages of
GAs were presented in our previous paper.’ In previous studies the
present authors successfully applied two versions of GAs (termed
GA version 1 and GA version 2). Both of the versions were adapted
from Carroll’s FORTRAN Genetic Algorithm Driver, to solve two
kinds of difficult, computationally intensive, combinatorial, and
continuouslarge-scaleoptimizationproblems[codeavailableonline
at http:/www.aic.nrl.navy.mil:80/galist/src/#fortran (cited 3 May
2002)]. These problems include finding both an optimal placement
and optimal voltages of 30 piezoelectric actuators, from 193 can-
didate locations, with more than 1.28 x 10* possible solutions to
obtain the best correctionto the surface thermal distortions of a thin
hexagonal spherical primary mirror (Fig. la in Ref. 5) of an as-
tronomical telescope. The thermal distortions were caused by four
different types of spatial temperature distributions. The two types
of optimization problems were as follows: 1) to find the optimal lo-
cations and optimal voltages suitable for each type of thermal loads
individually and 2) to determine just one set of actuator locations
that would reduce the distortion caused by all four types of thermal
loads. The latter problem is a more challenging, multicriterion opti-
mization problem. A laminated triangular shell element® was used
to model the mirror. The main conclusions from our previous stud-
ies are as follows: 1) the design search space is highly multimodal;
2) both GA version 1 and GA version 2 are effective for the op-
timization of piezoelectric actuator locations; 3) GA version 2 has
more flexibility than GA version 1; 4) GA version2 can get modestly
betterresults than DeLorenzo algorithm for both optimization prob-
lems for the case of 30 piezoelectric actuators; 5) the convergence
to a solution can occur without reaching an optimal or near-optimal
solution;6) more than one suboptimal solution to each problem was
found; 7) optimal location obtained for one type of thermal loads
may perform poorly for other types of thermal loads; and 8) GAs
can determine one set of actuator locations, which is good for all
four of the types of thermal loads considered for these studies. The
needed voltages will be different for different thermal loads.
In the present Note an improved GA, termed GA version 3 and
adapted from the GA version 2, is employed to resolve the two
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